AN UNUSUAL BOND MIGRATION DURING O-ACYLATION

OF TETRAMIC ACIDS

Raymond C.F. Jones* and Graeme E. Peterson

Department of Chemistry, The University, Nottingham, NG7 2RD, England.

<u>Summary</u> The quaternary ammonium enolates of 5-substituted pyrrolidine-2,4-diones undergo isomerisation to the exocyclic $\Delta^{5,6}$ -isomers during O-acylation.

The group of 3-acyl tetramic acids of general structure (1) are microbial metabolites of interest for their range of biological activities; an example is tirandamycin, the potent inhibitor of bacterial DNA-directed RNA polymerase.¹ As part of a synthetic programme in this area we have reported two methods for acylation of pyrrolidine-2,4-diones (2), either with acid chlorides and Lewis acids,² or using the reaction of vinyl-lithium reagents (3) with aldehydes.³ Attempts at base-mediated acylation of diones (2) by others have led either to

predominant 4-Q-acylation, <u>i.e</u>. (4), or to low to moderate yields of the desired 3-C-acylation, <u>i.e</u>.(1), using various metal enolate derivatives and acid chlorides or fluorides,⁴ or triethylamine and an active ester.⁵ We wish to report our studies using a tetra-alkylammonium enolate of (2), that have uncovered an unexpected double-bond migration during acylation.

When 1-methyl-5-isopropylpyrrolidine-2,4-dione (2; R^1 =CHMe₂, R^2 =Me), the tetramic acid nucleus of the mould pigment erythroskyrine⁶ and prepared from <u>N</u>-methyl-<u>L</u>-valine methyl ester,³ was treated with acetyl chloride-triethylamine (CH₂Cl₂, reflux), the enol acetate (4; R^1 =CHMe₂, R^2 = R^4 =Me)⁷ was isolated (87%). In contrast, when the dione was treated with tetraethylammonium hydroxide solution (1 equiv.) and the dried tetraethylammonium salt was acylated with freshly distilled acetyl chloride (3 equiv., CH₂Cl₂, 25°C, 48 h), an alternative product, m.p. 64°C, was isolated (55%). This was identified as the 4-O-acetyl- $\Delta^{5,6}$ -isomer (5) on the basis of analytical and spectroscopic data,^{7,8}

for example the ¹H and ¹³C n.m.r. spectra (with appropriate decoupling experiments) from which the $-CH(OR)CH_2$ - and $Me_2C=C$ fragments could be deduced. <u>O</u>-Acylation has thus been accompanied by a double-bond migration. To examine the generality of this isomerisation the 5-benzyl dione (2; R¹=CH₂Ph,R²=H), available from other work in our laboratories,² was treated in the same way. Two crystalline products were obtained that were identified as the (<u>E</u>)- and (<u>Z</u>)-4-<u>O</u>-acetyl- $\Delta^{5,6}$ -isomers (6a),⁷ m.p. 97-98°C (60%), and (6b),⁷ m.p. 129-131°C (20%), respectively, by spectroscopic methods including ¹H n.m.r. spectra and n.O.e. measurements. When the minor (<u>Z</u>)-isomer (6b) was recrystallised from chloroform-hexane the same 3:1 mixture of (6a) and (6b) was again formed.

These double-bond shifts may be rationalised as a series of protonationdeprotonation steps catalysed by traces of acid present in the acylation reaction mixture, with the $\Delta^{5,6}$ location representing a thermodynamic minimum. No isomerisation of enol acetate $(4; R^1=CHMe_2, R^2=R^4=Me)$ was observed on standing in acid-free dichloromethane for several days.

An attempt to deprotonate enamide (5) under kinetic conditions $(\text{LiNPr}_2^1, -78^\circ\text{C})$ led, not surprisingly, to elimination of acetic acid and isolation of lactam (7),⁷ whose properties are under investigation.

We thank SERC and Beecham Pharmaceuticals for a CASE studentship (to G.E.P) and Drs. A.G. Brown and M. Gilpin (Beecham) for helpful discussion.

References

- 1. D.J. Duchamp, A.R. Branfman, A.C. Button, and K.L. Rinehart, J.Am.Chem.Soc., 1973,95,4077.
- 2. R.C.F. Jones and S. Sumaria, Tetrahedron Lett., 1978, 3173.

3. R.C.F. Jones and G.E. Peterson, Tetrahedron Lett., 1983, 24, preceding Letter.

- V.J. Lee, A.R. Branfman, T.R. Herrin, and K.L. Rinehart, <u>J.Am.Chem.Soc</u>., 1978, <u>100</u>, 4225;
 S. Toda, S. Nakagawa, T. Naito, and H. Kawaguchi, <u>J.Antibiotics</u>, 1980, <u>33</u>, 173.
- 5. J.L. van der Baan, J.W.F.K. Barnick, and F. Bickelhaupt, Tetrahedron, 1978, 34, 223.
- 6. J. Shoji, S. Shibata, U. Sankawa, H. Taguchi, and Y. Shibanuma, Chem. Pharm. Bull, 1965, 13, 1240.
- All new compounds gave spectra (IR, UV, NMR, MS) consistent with the assigned structure, and satisfactory accurate mass measurement or combustion analysis.
- 8. For (5): ν_{max}(Nujol) 1730, 1700, 1665 cm⁻¹; λ_{max}(EtOH) 231(ε12,650) nm; δ_H(CDCl₃) 1.75 and 1.95 (each 3H,s,CH₃C=), 2.75(3H, s, CH₃CO), 2.45(1H, d, <u>J</u> 18Hz, CHH), 2.83(1H, dof d, <u>J</u> 18 and 6.5 Hz, CH<u>H</u>), 3.30(3H, s, NCH₃), and 5.80(1H, d, <u>J</u> 6.5 Hz, CHOAc); δ_C(CDCl₃) (with offresonance multiplicities) 19.1, 20.9, 21.3, 31.1 (allq), 37.8 (t), 68.4(d), 112.1, 133.3 170.1, 173.7 (all s).

(Received in UK 24 August 1983)

4756